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Abstract. We present a new heuristic for the global solution of box constrained quadratic prob-
lems, based on the classical results which hold for the minimization of quadratic problems with
ellipsoidal constraints. The approach is tested on several problems randomly generated and on graph
instances from the DIMACS challenge, medium size instances of the Maximum Clique Problem.
The numerical results seem to suggest some effectiveness of the proposed approach.
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1. Introduction

We consider global optimization problems of the form

min�f �x�= 1

2
x�Ax+b�x �x∈ 	−1
1�n (1.1)

where A= 	aij�∈ IRn×n is a symmetric n×n matrix and x
b∈ IRn with x�

denoting the transposed vector. Problems of such form appear in a number of
applications. Moreover (1.1) arises as subproblem in the solution of more complex
optimization problems. For the convex case, which is known to be polynomially
solvable [12], many different approaches have been proposed. Also for the concave
case, which is equivalent to the 0–1 quadratic problem, several algorithms exist
based on the combinatorial nature of that problem. Here public domain packages
like Q01SUBS [18] are available. However, there are very few algorithms for the
general indefinite case, where the matrix A has eigenvalues of mixed sign (see, for
example, a recent paper [20] or [7] for a survey on bound constrained quadratic
programming). In general only problems with few variables can be handled with
exact algorithms, and therefore, for medium-size and large problems, heuristics
have to be devised, which iteratively produce a sequence of local solutions. Obvi-
ously, the hard task calling for heuristic approaches is to escape from an inefficient
local solution towards an improving one.

The paper is organized as follows. In Section 2 we first review some results
taken from the trust region literature, about global minimization of a quadratic
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function over a ball. The key result for the purposes addressed in this paper is
apparently new: the Lagrange multiplier for the global solution (which is known
to be unique) depends continuously, and in an decreasing manner, on the radius
of the ball. In fact, this dependence is even smooth, with the — possible, but
from a generic viewpoint highly improbable — exception of one kink. We also
show that a global solution can be chosen such that it depends continuously (again,
generically, even smoothly) on the radius. Note that in degenerate cases, the global
solution need not be unique. In Section 3 we present a heuristic algorithm for the
problem (1.1), in which a local solver is used, using a ‘promising’ starting point
whose computation is motivated by the results in Section 2. Such an algorithm can
naturally be embedded in a branch and bound strategy. Finally, Section 4 presents
some computational results on a wide variety of test problems. In particular the
algorithm is tested on small and medium sized graph instances from the DIMACS
Challenge.

2. Local and global minimizers for quadratic functions over a ball

In this section we study the auxiliary problem

min�f �x�= 1

2
x�Ax+b�x �x∈ IRn with x�x�� (2.2)

It is well-known in the trust-region literature, see, e.g., [14, 13, 19], that there is
at most one local solution to (2.2) which is not global, and generically, the global
solution to (2.2) is unique. Moreover, we exhibit a way how to obtain a global
solution which depends continuously on the ball radius, or, equivalently, on � (as
usual, we denote by �x�=√

x�x). It will turn out that this dependence is in
fact smooth, with the possible exception of a single kink at some critical �crit in
degenerate cases. Similarly, the corresponding Lagrange multiplier depends (again,
with the possible exception of one kink at �crit) smoothly and in a monotonically
decreasing way on the radius. While most of the used technology is folklore by
now, the monotonicity and smoothness results seem to be new, and in order to
establish them we anyhow need the prerequisites which were used previously. Thus
we decided to present also short proofs of known results, to make the presentation
self-contained, and in particular to shed some light on the genericity conditions
which exclude degeneration of the problem.

We start with some second-order optimality conditions for Karush/Kuhn/Tucker
(KKT) points x̄ of (2.2).

Recall that such a point satisfies

(i) �A+�In�x̄+b=0� (ii) ��x̄�x̄−��=0�

with (iii) x̄�x̄�� and ��0� (2.3)

The last conditions (iii) are the primal (for x̄), and dual (for the Lagrange multi-
plier �) feasibility conditions, respectively, while (i) and (ii) represent first-order
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optimality and complementarity. Note that as Slater’s constraint qualifications are
satisfied for the problem (2.2), all local solutions must satisfy (2.3).

First observe that if there is no local solution at the boundary of the ball, then
from compactness of the feasible region there must be a local solution x̄ in the
interior (namely at least the global one), and therefore the unrestricted second-
order optimality conditions familiar from elementary calculus imply that A must
be positive semidefinite. Clearly, Ax̄=−b but there there is no alternative solution
to Ax=−b (otherwise we would obtain a global solution also at the bound-
ary). Hence A cannot be singular, and therefore A must be positive-definite. Con-
sequently, the optimal solution reads x����=−A−1b for all ��b�A−2b. For
smaller �, we again must have (local) solutions on the boundary of the ball. So
without loss of generality we may and do investigate in the sequel only solutions
that satisfy x̄�x̄=�, regardless of the definiteness of A.

Returning to the general case, the second-order condition necessary for local
optimality of a KKT point x̄ can be expressed as a lower bound for � in terms of
the spectrum of A. Denote by

�1=�2=···=�k<�k+1� ···��n

the eigenvalues of A, where the smallest eigenvalue of A has multiplicity k (pos-
sibly k=1). Observe that the case where all eigenvalues coincide, i.e., where
A=�1In, is trivial: unless b=0 (where x�=o is the global solution for any �>0
if �1�0 while x� is some x with x�x=� if �1<0), we get x�=−b/��1+��
where �=−�1+

√
�b�b�/� if this quantity is positive, or else x�=−b/�1 in the

interior of the ball. So again without loss of generality let us assume in the sequel
that A has a nonzero spectral spread.

The next three results were established by Martínez [14]. For the readers’ con-
venience, we provide a self-contained (and slightly simplified) presentation. In
the sequel, we sometimes use coordinates relative to the orthogonal eigensystem
u1
���un of A, where ui satisfy u�

i ui=1 and Aui=�iui. Then A is replaced
with U�AU =diag��1
���
�n�, and b with c=U�b, while the constraint
x�x=vU�Uv=v�v�� remains unchanged.

THEOREM 1 (Lemma 2.4 in [14]) If x̄ is a local solution to (2.2), then x̄ sat-
isfies (2.3), i.e., x̄ is a KKT point of (2.2), and the Lagrange multiplier � must
necessarily satisfy

��−�2 � (2.4)

Proof. We adapt a similar proof for global optimality conditions in [11].
Put !>0 (to be chosen later) and let d be some direction with −!<d�x̄<0.
Then for t=−2d�x̄/d�d, we get

�x̄+td���x̄+td�= x̄�x̄−4
d�x̄
d�d

d�x̄+4
�d�x̄�2

�d�d�2
d�d=�




4 PASQUALE L. DE ANGELIS, IMMANUEL M. BOMZE AND GERARDO TORALDO

so that x̄+td is feasible to (2.2). Now if $>0 is so small that f �x��f �x̄� for
every feasible x with �x− x̄�<$, choose !=$ �d�

3 . Then, by construction of t,
we get for x= x̄+td that �x− x̄�<$ and thus f �x��f �x̄�. But

f �x̄+td�−f �x̄� = td��Ax̄+b�+ t2

2 d
�Ad

= td��−�x̄�+ t2

2 d
�Ad

= t2

2 d
��A+�In�d+ �

2

[−2td�x̄−t2d�d
]

= t2

2 d
��A+�In�d+ �

2

[�x̄�2−�x̄+td�2
]

= t2

2 d
��A+�In�d�

(2.5)

Thus we arrive at the condition d��A+�In�d�0 for all directions d with −!<
d�x̄<0. Now let v be a direction perpendicular to x̄. Then v can be arbitrarily
well approximated by such a direction d, and continuity of the quadratic form
finally yields

v��A+�In�v�0 for all v⊥ x̄ � (2.6)

Evidently, this cannot happen if A+�In has more than one negative eigenvalue
(including multiplicities). Hence the result. �

Theorem 1 can be also derived from much more general second-order optimality
conditions for nonlinear optimization problems, see, e.g., [6] (and observe that
Abadie’s constraint qualification for M&=�x∈ IRn ��x�=� if &=�>0
are satisfied in the present context). However, for the readers’ convenience we here
provided a concise direct proof.

The global case is also treated in Theorem 2.1 of [11] (earlier references are
Lemmas 2.2 and 2.3 in [14] or, e.g., [17]):

THEOREM 2 Suppose that x̄ satisfies (2.3), i.e., x̄ is a KKT point of (2.2). Then
x̄ is a global solution to (2.2) if and only if the Lagrange multiplier � satisfies

��−�1 � (2.7)

Proof. The assertion is equivalent to the requirement that A+�In be positive
semi-definite, as formulated in [11]. �

The next step deals with a non-generic case which complicates analysis, and
shows that then no non-global solution may exist:

LEMMA 3 (Lemma 3.2 in [14]). If b∈�u1
���
uk
⊥, then no non-global local

solution to (2.2) can exist.



ELLIPSOIDAL APPROACH TO BOX-CONSTRAINED QUADRATIC PROBLEMS 5

Proof. Let � be the Lagrange multiplier of a non-global local solution x̄ to (2.2).
Then, by Theorems 1 and 2, −�2��<−�1. Thus necessarily �1<�2 so that
k=1. Now by hypothesis,

0=−b�u1=u�
1 �A+�In�x̄=��1+��u�

1 x̄

and � �=−�1 imply x̄⊥u1. On the other hand, u�
1 �A+�In�u1=�1+�<0,

contradicting (2.6). Hence the result. �

As a consequence of the previous proof, existence of a local, non-global solution
implies simplicity of the smallest eigenvalue �1 of A (i.e., k=1).

Next we attack the question how many local solutions to (2.2) may coexist: to
this end the so-called secular function [19]

'�t�=
n∑

i=1

c2
i

��i+t�2

plays an important role. This function is well-defined onD'= IR+\�−�1
���
−�n,
and ' is strictly convex on D'. Observe that if the multiplier �∈D', then �
determines the KKT point uniquely since A+�In is then non-singular and

x̄=−�A+�In�
−1b
 (2.8)

as can be seen from the conditions (2.3)(i). But the remaining (ii) and (iii) also
imply that for any �∈D'\�0, we get x̄=Uv̄ with

v̄i=− ci
�i+�




where � satisfies '���=∑n
i=1�v̄i�

2=�. This establishes the significance of the
secular function '.

We next show that under conditions which are generically (w.r.t. A and b)
satisfied, there are at most three local solutions to (2.2).

THEOREM 4 Suppose that b � 	�u1
���
uk
⊥ ∪ �uk+1
���
um

⊥� where
�uk+1
���
um is the eigensystem to the eigenvalue �k+1 with multiplicity m−
k+1�1 (if the smallest two eigenvalues of A are simple, this condition re-
duces to �b�u1��b

�u2� �=0�. Then there are at most three local solutions to (2.2)
at the boundary of the ball. Every such local solution x̄ satisfies x̄=Uv̄ with
v̄i=−ci/��i+��, where �>−�k+1 satisfies � �=−�1 and '���=�.

Proof. In coordinates w.r.t. the eigensystem of A, the assumption b��u1
���
uk
⊥

reads ci=b�ui �=0 for some i∈�1
���
k. Without loss of generality we
assume c1 �=0. But as

diag ��1+�
���
�n+��v̄=U��A+�In�UU�x̄=U��−b�=−c



6 PASQUALE L. DE ANGELIS, IMMANUEL M. BOMZE AND GERARDO TORALDO

we get ��1+��v1=−c1 �=0, so that � �=−�1. Similarly we obtain from
b��uk+1
���
um

⊥ (again, after rearranging indices in case of m−k+1>1
if necessary) from ck+1 �=0 also � �=−�k+1. Hence we obtain via Theorem 1
that �∈D'∩ �−�k+1
+�	 . On this region, the secular function ' has only
one pole located at −�1. For t→�1, we get '�t�→+�, and also '�t�→+�
as t↘−�k+1 while '�t�↘0 as t↗+�. From strict convexity of ' on this
region, we infer that there are at most three distinct solutions �1
2
3 to the equation
'���=� (at least one for every �, two for a particular value of �, and three for all
larger �). To every such �i there corresponds exactly one KKT point, and so there
are at most three local solutions. �

Note that similar but refined arguments are used by Lucidi et al. in [13] to bound the
number of KKT points of (2.2). Also, the last result can be sharpened considerably
for global solutions:

THEOREM 5 Suppose that b��u1
���
uk
⊥ (if the smallest eigenvalue of A is

simple, this reduces to b�u1 �=0). Then there is exactly one global solution to (2.2)
at the boundary of the ball. This solution x̄ satisfies x̄=Uv̄ with v̄i=−ci/��i+��,
where �>−�1 satisfies '���=�.

Proof. The arguments are virtually the same as in the previous theorem. Indeed,
using Theorem 2, we see that now the relevant part of D' shrinks to the region
IR+∩ �−�1
+�	 , upon which the secular function is even smooth. �

Now we prove the sharpening of Theorem 4 due to Martínez:

THEOREM 6 (Lemma 3.2 in [14]) There is at most one local, non-global solu-
tion x̄ to (2.2), and this solution has a Lagrange multiplier � which satisfies

'′����0

where '′ is the derivative of the secular function.

Proof. We only have to establish the asserted inequality. The remainder follows
from the arguments in Theorem 4 (use Lemma 3). Starting point of our reasoning
is the relation (2.6). We first construct a basis of x̄⊥. Consider the vectors

wj=
cj

�j+�
u1−

c1

�1+�
uj 
 j=2
���
n�

Since c1 �=0 as shown in the proof of Theorem 4, these vectors �w2
���
wn
are linearly independent and they all satisfy wj⊥ x̄, because of x̄=Uv̄=
−∑n

i=1ciui/��i+��, so that

w�
j x̄=

n∑
i=1

ci
�i+�

[
cj

�j+�
u�

1 ui−
c1

�1+�
u�
j ui

]
=0�
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Thus, forming the n×�n−1� matrix B= 	w2
���
wn�, we see that condition (2.6)
can be rephrased as a positive-semidefiniteness condition for the symmetric �n−
1�×�n−1� matrix B��A+�In�B. Now observe that

�A+�In�wj=
cj��1+��

�j+�
u1−

c1��j+��

�1+�
uj 


whence we deduce that the entry in the ith column and jth row of B��A+�In�B
equals

w�
i �A+�In�wj=

cicj��1+��

��i+����j+��
+ c2

1��i+��2

��1+��2
�ij 


where �ij is the Kronecker symbol. Written in compact form, we thus obtain

B��A+�In�B=D−ss�


where D is a diagonal, positive-definite matrix, and s has coordinates

sj=
√��1+�� cj

�j+�



for j=2
���
n. Hence B��A+�In�B is positive-semidefinite if and only if
In−1−�D−1/2s��D−1/2s�� is so, with

D−1/2=diag

(
��1+��

�c1�
√
�j+�

)
j=2
���
n

designating the inverse of the square-root factorization ofD. But a symmetric rank-
one update of In−1 in this form, In−1−vv� is positive-semidefinite if and only
if v�v�1, as a direct argument via v⊥ and the Cauchy-Schwarz-Bunyakovsky
inequality shows. Finally, we calculate

1��D−1/2s���D−1/2s�=s�D−1s=−��1+��3

c2
1

n∑
j=2

c2
j

��j+��3



which obviously is equivalent to '′����0. �

Finally, we obtain a simple genericity condition guaranteeing that there are at most
two local solutions:

COROLLARY 7 If there is a local, non-global solution x̄ to (2.2), then there is no
other local-nonglobal solution. If, furthermore, b�u1 �=0, then there are in total
two local solutions, namely x̄ and the (unique) global solution x∗.
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Proof. Existence of x̄ implies, as observed in the proof of Lemma 3, k=1. Hence
the result follows by Theorems 6 and 5. �

At the end of this section, we investigate continuous dependence of the global
solution from the parameter � (the square of the ball radius). For completeness,
we also deal with the non-generic case where b∈�u1
���
uk

⊥, and provide an
explicit construction both for the multiplier ����� and the optimal solution x����.

THEOREM 8 For varying �, we can choose a global solution x���� to (2.2), which
depends continuously upon �. This dependence is smooth if b��u1
���
uk

⊥,
whereas it has exactly one point of non-differentiability in case of b∈�u1
���
uk

⊥.
Also the correspondingmultiplier����� exhibits the same smoothness and continu-
ity behavior.

Proof. The first assertion can be derived from Theorem 5, invoking the Implicit
Function Theorem, applied to the equation F�t
��='�t�−� on the region
�−�1
+�	× �0
+�	 where F is well-defined and smooth. However, if b∈
�u1
���
uk

⊥, we have to argue more carefully since there may be more than one
global solution, and since the case �=−�1 (the largest potential pole of ') is not
ruled out a priori. However, in this case we get

'�t�=∑
i>k

c2
i

��i+t�2



which is well defined for all t>−�k+1 (in particular, for t=−�1). Now put
�crit='�−�1�. If �<�crit, then there is a unique �����=�>−�1 such that
'���=�, since ' decreases strictly on 	−�1
+�	 . In this case, put

v�i ���=0 if i�k whereas v�i ���=− ci
�i+�

if i>k�

Then x����=Uv���� is the only KKT point with multiplier ������−�1, and
thus the only global solution. Again invoking the Implicit Function Theorem, we
obtain smooth dependence of the above quantities upon �.
If, however, ���crit, then define �����=−�1, a constant in �, and put

v�i ���=
√
	�−'�−�1��/k if i�k whereas v�i ���=− ci

�i−�1

if i>k�

Then the continuity assertion is a consequence of �����↘−�1 as �↗�crit,
which in turn follows from strict monotonicity and continuity of ' on 	−�1
+�	 .
Finally, we obtain via '′�−�1�<0 and the Implicit Function Theorem that the
left-hand side derivative of ����� at �crit satisfies

d��

d�
��crit�=−

.F

.�
�−�1
�crit�

.F
.t
�−�1
�crit�

=− −1

'′�−�1�
<0
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so that there must be a kink at �crit for �����. �

Here we should stress that it is not suggested to employ the above explicit con-
struction in numerical application. It serves only for establishing the theoretical
result. Only in the highly unlikely case of b∈�u1
���
uk

⊥ one might be forced
to return to the above (or similar) constructions. Observe that for testing the latter
conditions, we need only information on the eigenspace for the smallest eigenvalue
rather than complete spectral decomposition of A.

Finally, we obtain an important monotonicity result for the multiplier:

COROLLARY 9 The Lagrange multiplier����� is (can be chosen as) decreasing
in �.
If b∈�u1
���
uk

⊥, then ����� strictly decreases on the interval 	0
�crit� (and is
constant for larger �), while if b��u1
���
uk

⊥, then ����� decreases strictly on
the whole IR+.

3. The algorithm

Once we have established continuous dependence of the global solution x���� upon
the radius, we can proceed as follows:

3.1. algorithm ebh

1. Start with �0=n (then the ball is containing the box B), determine �0=
����0� and x0=x���0� by solving the corresponding trust region problem.

2. If x0∈B, stop and return x0 that is the exact solution of the BCQP; else
determine the multiplier ��=���1� for the ball completely contained in B
and put k=1.

3. Calculate

�k=��0+���/2


xk=−�A+2�kIn�
−1b


(then for �k=x�
k xk we have xk=x���k� and �k=����k�, according to (2.8)

and Theorem 5).
4. If xk∈B and near the boundary .B of B, stop and return xk as the promising

point (to be used as starting point for any local solver); else, if xk∈B then put
��=�k else put �0=�k.

5. Replace k with k+1 and repeat from 3.

From Corollary 9 and Theorem 8 we can be sure that the above procedure is
finite. The next step is a branch-and-bound approach with the help of the obtained
promising point xk. We cut the box B in two halves by bisecting along that coordin-
ate direction i which is most promising in the sense that the minimal deviation of
the i-th coordinate of xk from±1 is largest. Repeating this recursively, we generate
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2m subboxes by m such cuts. Of course, subboxes for which the minimum of f �x�
on the including ball is larger than the best current solution can be discarded from
further analysis. This cannot be used as an exact algorithm, because of the pro-
hibitive computational cost that it would require, so a heuristic stopping criterion
must be used. In our computational experiments we used as a stopping criterion a
prefixed number maxit of cuts.

4. Computational results

A prototype Matlab version of algorithm EBH was tested on a set of test prob-
lems. For the minimization of f �x� over a ball, we used the code trustpen [13].
As a local solver for the box-constrained quadratic problem solved we used the
Matlab routine quadprog [15]. As already pointed out, for a prefixed maximum
number maxit of cuts, at most 2maxit problems of the form (2.2) had to be solved.

4.1. TEST PROBLEMS WITH KNOWN GLOBAL SOLUTION

We first try test problems with known global, generated as in [10], moving from
the sufficient global optimality condition originally proposed by Neumaier [16].
However, we found such problems very easy, in the sense that the Matlab local
solver was almost always able to find the global solution.

Therefore for constructing test problems, we used the sufficient global optim-
ality conditions recently described by Beck and Teboulle [2] for quadratic optim-
ization problems with binary constraints, that can be easily rephrased for concave
box-constrained quadratic problems.

THEOREM 10 Consider the problem (1.1), with A negative definite. Then x is a
global solution for (1.1) if x is feasible and

&max�A�e�XAXe+Xb (4.9)

where e= 	1
���
1��∈ IRn, X=diag�xi�, and �max �A� is the largest
eigenvalue of the matrix A.

Based on Theorem 10, concave test problems were generated with A=HDH ,
withD a diagonal matrix whose elements are randomly generated from the interval
�−2
−1	; H a Householder matrix of a random vector; the prefixed solution x
randomly generated with components in �−1
+1, and the vector b is computed so
that the condition (4.9) holds. Test problems were generated with n=50
100
200;
for each dimension 10 different problems were generated. The value of maxitwas
set equal to 15 in our experiments.

From the computational results (Table I), we see that for such problems, the
ellipsoidal approach show to be very effective, since only for one instance of such
problems the global solution was not found; to be fair, we note that problems
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Table I. Failure
rates for EBH

n Failure

50 0
100 1
200 0

with known solution are usually not very difficult, because of the sufficient global
optimality conditions they are based on. So are the problems we generated, for
which the linear term is very strong. Nevertheless, to check that the problems are
not trivial, for each of them we run the linear solver 10n times, with randomly
generated starting points; we found that for none of them, the stationary point is
unique. For example, for the problems of size 100, we found for each of them 25
stationary points on the average. Also, for the local solvers, the problems shown to
be harder than the ones we generated as in [10].

4.2. TEST PROBLEMS WITH UNKNOWN GLOBAL SOLUTION

Next, we generated a first set of random test problems with unknown solution.
The matrix A has the form A=HDH , where H is a Householder matrix of a
random vector and D=diag�d�, with d a random vector such that �di�∈�1
2	.
For each matrix we generate five different problems, by taking b=d/10p, with
p=0
1
2
3
4
5. For p=5 we have problems in which the quadratic part
of the objective function dominates, and this is the opposite which happens for
p=0. Several problems were generated varying the size n and the percentage
Neg of negative eigenvalues of the Hessian matrix. To check the quality of the
solution that was found with the ellipsoidal approach, for each problem we run
n times the two local solvers with randomly generated starting points, and then
we compared the best solution (random solution), to the one we found using the
ellipsoidal approach. As expected, the number of stationary points for the test prob-
lems with unknown global solution is much higher than for the test problems with
known global solution. For the problems with 100 variables, in finding the random
solution, 25 different stationary points were found on the average.

From Table II, it is observed that the ellipsoid algorithm was able to find the best
(known) solution in 24 out of the 30 test problems; actually, for 13 problems the
solution that the algorithm was able to detect, was better than the one which was
found by the random approach. We also point out that for the six problems in which
the algorithm failed, just doubling the maximum number of iterations maxit, the
EBH algorithm was eventually able to get the best solution in four cases. The
number of failures (i.e., the problems in which the random solution was better
than the one found by the algorithm) is very low; although there is of course no
guarantee that the solution the algorithm was able to find is the global one, even
the suboptimal solutions found were of considerable high quality (measured by
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Table II. Performance of
EBH on random test prob-
lems (See text)

n Neg Failures

50 25 1
50 50 1
50 75 1
100 25 0
100 50 1
100 75 2

the fraction of EBH-result over the maximum over all random solutions found).
It seems that the effectiveness of the algorithm does not deteriorate when the
number of negative eigenvalues increases (since the number of failures increases
just slightly). On the other hand, for Neg=75 and Neg=50, the ellipsoidal
approach beats the random approach in 11 problems out of 20; in the problems
with Neg=25, the two approaches almost always get the same solution.

4.3. MAXIMUM CLIQUE PROBLEMS

The maximum clique problem is a classical problem in graph theory which can
be formulated as follows. Let G=G�V 
E�, with vertex set V =�1
2
���
n
and edge set E⊆V×V , be an undirected graph. The maximum clique problem
is the problem of finding a complete subgraph of G of maximal cardinality. This
problem has many equivalent formulations as an integer problem, or a continuous
nonconvex optimization problem, for a recent survey see [4]. Here we follow a
recent continuous reformulation approach from [1]: starting from the following
quadratic zero-one reformulation

min
{
f �x�=x�Ax−e�x � s.t. x∈�0
1n

}

 (4.10)

where A is the adjacency matrix of the complement graph of G and e is the vector
of all ones, consider the continuous relaxation problem

min
{
f �x�=x�Ax−e�x � s.t. x∈ 	0
1�n

}
� (4.11)

Since the matrix A has zeroes on the diagonal, this problem has at least one 0–1
solution, then the global solution of (4.10) is equal to (one of the) global solution(s)
of (4.11), and therefore a maximum clique can be computed by solving the problem
(4.11).

The EBH algorithm was then tested on problem (4.11) generated by a set of
some benchmark graph instances from the DIMACS challenge [9]. We selected
only graphs with less than 400 vertices. The results are shown in Table 3. On
purpose, we did not include the results of the similar reformulation approach in [1],
because not all instances in Table III were considered there. In short, the authors
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Table III. Maximum clique problems from the DIMACS challenge (see text)

Problem n Dens. (%) Clique size EBH (cuts) CBH SR AR

c-fat200-1 200 07.7 12 12 (1) 12 12 12
c-fat200-2 200 16.3 24 24 (1) 24 24 24
c-fat200-5 200 42.6 58 58 (1) 58 58 58

hamming6-2 64 90.5 32 32 (1) 32 32 32
hamming6-4 64 34.9 4 4 (1) 4 4 4
hamming8-2 256 96.9 128 128 (1) 128 128 128
hamming8-4 256 63.9 16 16 (1) 16 16 16
johnson8-2-4 28 55.6 4 4 (1) 4 4 4
johnson8-4-4 70 76.8 14 14(1) 14 14 14
johnson16-2-4 120 76.5 8 8 (1) 8 8 8

p_hat300-1 300 24.4 8 8 (2) 8 6 8
p_hat300-2 300 48.9 25 24 (3) 25 22 25
p_hat300-3 300 74.5 36 32 (1) 36 32 35

MANN_a9 45 92.7 16 16 (1) 16 12 16
MANN_a27 378 99.0 126 125 (4) 121 117 117

keller4 171 64.9 11 9 (8) 10 7 8
brock200_1 200 74.5 21 20 (1) 20 17 19
brock200_2 200 49.6 12 10 (1) 12 8 10
brock200_3 200 60.5 15 11 (1) 14 9 13
brock200_4 200 65.8 17 15 (5) 16 12 14
san200_0.7_1 200 70.0 30 15 (3) 15 15 15
san200_0.7_2 200 70.0 18 12 (1) 12 12 12
san200_0.9_1 200 90.0 70 46 (2) 46 45 45
san200_0.9_2 200 90.0 60 40 (10) 36 36 39
san200_0.9_3 200 90.0 44 34 (9) 30 32 31

sanr200_0.7 200 69.7 18 16 (7) 18 14 16
sanr200_0.9 200 89.8 >−42 35 (3) 41 37 41

report in [1] the same figures as in Table III for the first 10 lines. Their algorithm
has equal performance as EBH on the Mannino graphs MANN_ax (x∈�9
27)
and the Sanchis graphs san200_0.9_x (x∈�2
3), beats EBH by one node for
san200_0.9_1, and hits the maximum clique in the Keller graph keller4.
All other instances were unfortunately not covered in [1]. The columns labelled by
CBH, SR, and AR, refer to different but related continuous-based heuristics for
the maximum clique problem. Essentially, all these are based upon the Motzkin–
Strauß program which reformulates the Maximum Clique Problem as a Standard
Quadratic Optimization Problem, i.e. to find the maximum of a quadratic form
over the standard simplex (rather than over a box). Here, the matrix generating the
quadratic form is the adjacency matrix of the graph.

The first method considered is the Continuous Based Heuristic (CBH) [8], which
employs a parameterized version of the original Motzkin–Strauß program. The
problem is divided into a series of subproblems with the simplex constraints re-
laxed into spherical ones (this is a related feature to our approach). A combinatorial
post-processing phase is needed to round the solutions produced by the procedure
that solves the subproblems back to the standard simplex.
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Thesecondprocedure is theSimpleReplicatorDynamicsapproach (SR) [5]which
basically finds local solution to a regularized version of the Motzkin-Strauß pro-
gram (adjacency matrix plus 1/2 times the identity matrix) with the help of rep-
licator dynamics, a discrete time (non-Euclidean gradient) dynamical system op-
erating on the standard simplex (thus feasibility is guaranteed throughout the al-
gorithm).

The third algorithm is Annealed Replication (AR) [3]. It uses a parameterized
quadratic form emerging from perturbing similar as in SR the adjacency matrix
(here plus 8 times the identity matrix), and iteratively searches for local solutions
via replicator dynamics. In order to escape inefficient local solutions, thereafter the
parameter 8 is varied as in simulated annealing, but motivated by more principled
arguments.

5. Conclusions

Moving from some new theoretical results concerning the global minimization of
a quadratic function over a ball, and more specifically the continuous dependence
of the Lagrange multiplier for the global solution on the radius of the ball, we
proposed an heuristic algorithm for the global solution of box constrained quadratic
programming problems. The algorithm, embedded in a branching strategy, showed
to be successful in many of the test problems we used in our computational exper-
iences. In particular, our approach gave reasonable good results on a wide set of
some benchmark graph instances from the DIMACS challenge, although no special
care was taken to fit the algorithm to the maximum clique problem. We therefore
believe that the proposed algorithm can be fruitfully used, at least, as an excellent
procedure to give a very good starting point to any local solver.
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